An International Journal of Otorhinolaryngology Clinics

Register      Login

VOLUME 16 , ISSUE 1 ( January-April, 2024 ) > List of Articles

EXPERT VIEW/REVIEW PAPER

The Vital Role of Nitric Oxide in the Healing of Dental Implant Patients

Nikita Karabale, Pankaj Dhawan, Harsimran Kaur

Keywords : Dental implants, Healing, Nitric oxide, Osseointegration

Citation Information : Karabale N, Dhawan P, Kaur H. The Vital Role of Nitric Oxide in the Healing of Dental Implant Patients. Int J Otorhinolaryngol Clin 2024; 16 (1):64-66.

DOI: 10.5005/jp-journals-10003-1471

License: CC BY-NC 4.0

Published Online: 11-04-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Background: Nitric oxide, a diatomic free radical activated by phagocytic leukocytes, arginine a catalyzed product that is synthesized by nitric oxide synthases. It is one of the mechanisms which assists in the resolution of inflammation. A review of its effect on healing around dental implants is yet to be studied. Objective: To review the role of nitric oxide on healing around dental implants. Material and methods: A digital search was carried out using Google Scholar, Medline, and PubMed. The most related article was selected for the review. Conclusion: Osseointegration of dental implants is inclined by many factors which affect the bone-implant contact formation process, and it initiates by forming a hematoma, immunomodulation, and angiogenesis following osteogenesis. Nitric oxide shows a biphasic effect on osteoblast and osteoclast activity, which depends on the concentration of nitric oxide and it can be an important factor in achieving successful osseointegration.


PDF Share
  1. Kaur A, Kharbanda OP, Kapoor P, et al. A review of biomarkers in peri-miniscrew implant crevicular fluid (PMICF). Prog Orthod 2017;18(1):42. DOI: 10.1186/s40510-017-0195-8.
  2. Gyurko R, Boustany G, Huang PL, et al. Mice lacking inducible nitric oxide synthase demonstrate impaired killing of Porphyromonas gingivalis. Infect Immun 2003;71(9):4917–4924. DOI: 10.1128/IAI.71.9.4917-4924.2003.
  3. Taira M, Sasaki M, Kimura S, et al. Dose-dependent effects of Ni (II) ions on production of three inflammatory cytokines (TNF-alpha, IL-1beta and IL-6), superoxide dismutase (SOD) and free radical NO by murine macrophage-like RAW264 cells with or without LPS-stimulation. J Mater Sci Mater Med 2008;19(5):2173–2178. DOI: 10.1007/s10856-007-3322-0.
  4. Ishii M, Nakahara T, Araho D, et al. Glycolipids from spinach suppress LPS-induced vascular inflammation through eNOS and NK-κB signaling. Biomed Pharmacother 2017;91:111–120. DOI: 10.1016/j.biopha.2017.04.052.
  5. Belluci MM, de Molon RS, Rossa C Jr, et al. Severe magnesium deficiency compromises systemic bone mineral density and aggravates inflammatory bone resorption. J Nutr Biochem 2020; 77:108301. DOI: 10.1016/j.jnutbio.2019.108301.
  6. Kargarpour Z, Nasirzade J, Panahipour L, et al. Platelet-rich fibrin decreases the inflammatory response of mesenchymal cells. Int J Mol Sci 2021;22(21):11333. DOI: 10.3390/ijms222111333.
  7. Bae JY, Lee DS, Cho YK, et al. Daphne jejudoensis attenuates LPS-Induced Inflammation by Inhibiting TNF-α, IL-1β, IL-6, iNOS, and COX-2 Expression in Periodontal Ligament Cells. Pharmaceuticals (Basel) 2022;15(4):387. DOI: 10.3390/ph15040387.
  8. Kim SR, Seong KJ, Kim WJ, et al. Epigallocatechin gallate protects against hypoxia-induced inflammation in microglia via NF-κB Suppression and Nrf-2/HO-1 Activation. Int J Mol Sci 2022;23(7):4004. DOI: 10.3390/ijms23074004.
  9. Tözüm TF, Türkyilmaz I, Yamalik N, et al. Analysis of the possible impact of inflammation severity and early and delayed loading on nitric oxide metabolism around dental implants. Int J Oral Maxillofac Implants 2005;20(4):547–556. PMID: 16161739.
  10. Tözüm TF, Turkyilmaz I, Yamalik N, et al. Analysis of the potential association of implant stability, laboratory, and image-based measures used to assess osteotomy sites: early versus delayed loading. J Periodontol 2007;78(9):1675–1682. DOI: 10.1902/jop.2007.070100.
  11. Güncü GN, Tözüm TF, Güncü MB, et al. Relationships between implant stability, image-based measures and nitric oxide levels. J Oral Rehabil 2008;35(10):745–753. DOI: 10.1111/j.1365-2842.2007.01844.x.
  12. Degidi M, Artese L, Piattelli A, et al. Histological and immunohistochemical evaluation of the peri-implant soft tissues around machined and acid-etched titanium healing abutments: A prospective randomised study. Clin Oral Investig 2012;16(3):857–866. DOI: 10.1007/s00784-011-0574-3.
  13. Barth KA, Waterfield JD, Brunette DM. The effect of surface roughness on RAW 264.7 macrophage phenotype. J Biomed Mater Res A 2013;101A(9):2679–2688. DOI: 10.1002/jbm.a.34562.
  14. Farhad AR, Razavi F, Razavi SM, et al. Histological assessment of the local effect of different concentrations of aminoguanidine hydrochloride on bone healing in rats. Dent Res J (Isfahan) 2021;18:63. PMID: 34584641.
  15. Miyashita Y, Kuraji R, Ito H, et al. Wound healing in periodontal disease induces macrophage polarization characterized by different arginine-metabolizing enzymes. J Periodontal Res 2022;57(2): 357–370. DOI: 10.1111/jre.12965.
  16. Loi F, Córdova LA, Zhang R, et al. The effects of immunomodulation by macrophage subsets on osteogenesis in vitro. Stem Cell Res Ther 2016;7:15. DOI: https://doi.org/10.1186/s13287-016-0276-5.
  17. Chen Z, Klein T, Murray RZ, et al. Osteoimmunomodulation for the development of advanced bone biomaterials. Mater Today 2016;19(6):304–321. DOI: https://doi.org/10.1016/j.mattod.2015.11.004.
  18. Zhao J, Zhao Q, Ning P, et al. G-CSF inhibits growths of osteoblasts and osteocytes by upregulating nitric oxide production in neutrophils. J Craniofac Surg 2019;30(8):e776–e780. DOI: 10.1097/SCS.0000000000005769.
  19. Zhang G, Han S, Wang L, et al. A ternary synergistic eNOS gene delivery system based on calcium ion and l-arginine for accelerating angiogenesis by maximizing no production. Int J Nanomedicine 2022;17:1987–2000. DOI: 10.2147/IJN.S363168.
  20. Tao H, Ge G, Liang X, et al. ROS signaling cascades: Dual regulations for osteoclast and osteoblast. Acta Biochim Biophys Sin (Shanghai) 2020;52(10):1055–1062. DOI: 10.1093/abbs/gmaa098.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.